Breakup of finite size colloidal aggregates in turbulent flow investigated by 3D-PTV

Debashish Saha¹, Matthaus Babler², Markus Holzner³, Miroslav Soos⁴, Beat Lüthi⁵, Alex Liberzon⁶, W. Kinzelbach³

1) Dept. Applied Physics, TU Eindhoven, the Netherlands
2) Dept. Chemical Engineering and Technology, KTH Stockholm, Sweden
3) Inst. Environmental Engineering, ETH Zurich, Switzerland
4) University Chemistry and Technology Prague, Czech Republic
5) Photrack AG, Zurich, Switzerland
6) School of Mechanical Engineering, Tel Aviv University, Israel

COST Action Flowing Matter – Conference 2016
Porto, January 11-15, 2016
Breakup of aggregates
Breakup of aggregates

- Processing of industrial colloids (polymers, metal oxides, pharmaceuticals)
- Flocculation operations in (waste)water treatment

Breakup of aggregates

- Processing of industrial colloids (polymers, metal oxides, pharmaceuticals)
- Flocculation operations in (waste)water treatment
- Evolution and transport of sediments and marine snow in natural waters

Picture: Satellite image River Plate Estuary, 2010-03-10 (www.eosnap.com, 2014-03-12), H. Grossart, Leibniz Institute of Freshwater Ecology
Aim of this work

Breakup mechanism in turbulence
Experimental setup

- Stationary turbulence, monitored by 3D PTV

Experimental setup

- Stationary turbulence, monitored by 3D PTV
- Inject a single pre-formed aggregate

Experimental setup

- Stationary turbulence, monitored by 3D PTV
- Inject a single pre-formed aggregate
- Follow the aggregate until (and beyond) breakup
- Determine local flow conditions that prevail at breakup

Experimental setup

Flow device
- $R_\lambda \approx 117$
- $\langle \varepsilon \rangle \approx 19 \text{ cm}^2/\text{s}^3$
- $\eta \approx 0.15 \text{ mm}$

Aggregates
- Made out of polystyrene colloids, $d_p = 420 \text{ nm}$
- Grown *in-situ* in the feed pipe, under oscillatory flow
- $d_{\text{agg}} = 1.4 \pm 0.4 \text{ mm}$
 Fractal dimension $d_f \sim 2.2$

Breakup experiments

Example of a breakup experiment

- $R_\lambda \approx 117$
- $\langle \varepsilon \rangle \approx 19 \text{ cm}^2/\text{s}^3$
- $\eta \approx 0.15 \text{ mm}$
- $d_{\text{agg}} \approx 1.4 \text{ mm}$
Breakup experiments

Example of a breakup experiment

- $R_\lambda \approx 117$
- $\langle \varepsilon \rangle \approx 19 \text{ cm}^2/\text{s}^3$
- $\eta \approx 0.15 \text{ mm}$
Hydrodynamic stress

Aggregate motion

- \(\frac{d_{\text{agg}}}{\eta} \approx 9 \pm 3 \)

- Aggregate Stokes number

\[
St = \frac{1}{18} \frac{\rho_{\text{agg}}}{\rho_f} \left(\frac{d_{\text{agg}}}{\eta} \right)^{3/4} = 0.3 \pm 0.1
\]

⇒ Aggregate motion is influenced by inertia
Hydrodynamic stress

Aggregate motion

- \(\frac{d_{agg}}{\eta} \approx 9 \pm 3 \)

- Aggregate Stokes number

\[
St = \frac{1}{18} \frac{\rho_{agg}}{\rho_f} \left(\frac{d_{agg}}{\eta} \right)^{3/4}
\]

\[
= 0.3 \pm 0.1
\]

⇒ Aggregate motion is influenced by inertia

Shear stress

\[
\sigma_{\varepsilon} \sim \mu (\varepsilon/\nu)^{1/2}
\]

Drag stress

\[
\sigma_{st} \sim \frac{3 \mu |v - u|}{d_{agg}}
\]
Results

Time lag from release to breakup

Shear stress at breakup

Drag stress at breakup

\begin{align*}
\text{Weak} & \quad \text{Strong} \\
\text{Aggregate strength} & \quad \text{Aggregate strength} \\
\end{align*}
Results

Accumulation of shear stress

\[\bar{\sigma}_i = \frac{1}{\Delta t} \int_{t_b-\Delta t}^{t_b} \sigma_i \, dt \quad \Delta t \sim \tau_\eta \]

Accumulation of drag stress

\[R^2 = 0.022 \]

\[R^2 = 0.21 \]
Conclusions

We studied the breakup of finite size aggregates made out of fully destabilized polystyrene colloids in homogeneous isotropic turbulence by means of 3D-PTV.

Major findings are:

- Hydrodynamic stress is dominated by drag.
- Breakup is caused by weak accumulation of stress.

Both these findings are an effect of the large aggregate size.

Acknowledgements

- Swedish Research Council VR, Grant No 2012-6216 (M. Babler)
- Swiss National Science Foundation, Grant No 144645 (M. Holzner)
- Specific University Research Grant of UCT, Grant No 20/2015 (M. Soos)
- EU-COST Action MP1305 *Flowing Matter*
Breakup mechanism: limiting cases

Soft aggregates (slow breakup)

- Bond breakup due to thermal motion of the colloids [1].

 - Depends on the duration the aggregate is subject to hydrodynamic stress.
 - *If true:* weak aggregates (=large aggregates) break earlier than stronger ones.

Brittle aggregates (fast breakup)

- Breakup caused by an abrupt breakup of bonds [2].

 - Occurs when the hydrodynamic stress exceeds a critical threshold.
 - *If true:* the hydrodynamic stress at breakup correlates with the aggregate size.

3D PTV with large aggregates

- Hydrodynamic stress dominated by drag
- Breakup is caused by weak accumulation of stress

Drag originates from the finite aggregate size

Finite stress propagation inside the aggregate

Sub-Kolmogorov aggregates

- Stress on small aggregates (in liquid) dominated by shear
- Small aggregates exhibit faster response
Aim: Investigating the mechanism of breakup in turbulence by monitoring individual breakup events in well controlled experiments
Aim of this work

Previous work: Dynamics of breakup

This work: Mechanism of breakup
Aim of this work

Previous work:
Dynamics of breakup

This work:
Mechanism of breakup
Experimental setup

Aggregates
- Made out of polystyrene colloids, $d_p = 420$ nm
- Grown *in-situ* in the feed pipe, under oscillatory flow
- $d_{agg} = 1.4 \pm 0.4$ mm
- Fractal dimension $d_f \sim 2.2$

Flow device
- $R_\lambda \approx 117$
- $\langle \varepsilon \rangle \approx 19$ cm2/s3
- $\eta \approx 0.15$ mm